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This thesis presents the design, controls, and testing of two systems: a novel colonoscope 

locomotion design for diagnostics, and a biosensor capsule that implants a sensor in the 

small intestine. Each system requires special design considerations for use in the 

gastrointestinal system.  

 Colonoscopy procedures are recommended as a screening for colon cancer and 

related conditions after the age of 50. The need for an improved colonoscope that reduces 

the colonoscopy time and patient discomfort is apparent. The semi-autonomous device 

presented here could likely reduce the colonoscopy procedure time by allowing the 

physician to focus more on the diagnosis and less on the procedure itself. It greatly reduces 

shear forces experienced on the colon wall, reducing pain and discomfort experienced by 

the patient.  

 The biosensor capsule presented in this thesis is also used for diagnostics. The 

device implants a sensor into the intestine wall, a sensor that could be used to track pH 

levels, temperature, or possibly even caloric intake. This thesis explores the transport 

capsule design and some of the electrical hardware used.  

 The thesis is divided into two parts, exploring both devices. Part one focuses on the 

design and testing of the colonoscope device, while part two focuses on the biosensor 

capsule device. In each part, the motivation behind each of the devices and the related 

works being accomplished at other research institutions are described. Each part then 



 
 

 
 

explores the design of the respective device and the reasons behind some of the design 

choices presented. For both projects, a significant amount of bench-top testing was 

performed; an in-depth look at the test methods and setup used, followed by the results of 

each is given. Results for the colonoscopy robot show full capability of traversing a 5-foot 

porcine colon with four 90-degree turns and potential for full automation. Results for the 

biosensor capsule device demonstrate the capability of sensor plate implantation and 

attachment lasting more than 40 hours. Finally, the conclusion section describes the future 

work associated with the device as well as the possibilities and accomplishments achieved 

through the design of each device, respectively.
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Part I: Colonoscopy Robot
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Chapter 1: Introduction 

 Hundreds of thousands of people each year die from colon cancer worldwide. It is 

one of the leading causes of cancer-related deaths in the United States. Preventive measures 

through diagnostics are the safest means of detecting cancer early. When the cancer is 

detected early, as with other cancers, it gives a physician the chance of removing the 

cancerous tissue before it can spread to the rest of the body. The cancer can typically be 

detected through a diagnostic endoscope inserted into the anus. A camera on the end of the 

endoscope shows the physician a live video feed of the inside of the colon as he maneuvers 

it to the cecum. A so-called working channel in the endoscope allows the introduction of 

tools which help the physician remove and diagnose polyps found within the colon (tissue 

interaction).  

 Due to the nature of inserting the endoscope into the anus and the difficulty of 

maneuvering the endoscope from the anus to the cecum, shear and tip forces cause pain 

and discomfort for the patient and can cause perforation in some cases. This thesis explores 

an alternative endoscope design that reduces shear forces exerted on the colon wall. The 

design includes a novel pneumatic means of locomotion through the colon. The device, 

shown in Figure [1-?], is inserted into the anus, and the locomotion is created by inflating 

a rolled-up latex tube housed inside the device tip. Since the inflated tubing is stationary, 

it significantly reduces shear forces on the colon wall.  

 Chapter 2 of this thesis will take a closer look at the current technology and new 

devices being researched to improve the colonoscopy process. In Chapter 3, the 

mechanical design is discussed and the general locomotion technique is described. 
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Chapter 4 discusses the control system used to advance the device through the colon. 

Chapter 5 presents several benchtop experiments performed to explore the safety and 

capability of the device. Finally, Chapter 6 discusses the results of the experiments and 

offers some concluding remarks. 
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Chapter 2: Motivation 

 Colorectal cancer (CRC) is one of the leading causes of cancerous deaths in the 

United States. In 2010, CRC claimed over 52,000 lives, and over 137,000 were diagnosed 

with the deadly cancer [2-1].  It is the most deadly cancer after lung cancer, killing more 

nonsmokers than any other cancer. If it is diagnosed at early stages, the 5-year survival rate 

is more than 88% [2-2].The survival rate is higher at early stages because the cancer forms 

as pre-cancerous polyps first. Physicians recommend a colon screening every ten years as 

the first defense against cancer. Other screening procedures include high-sensitivity fecal 

occult blood testing, sigmoidoscopy every 5 years, CT colonography, fecal DNA testing, 

and double-contrast barium enema [2-1, 2-3]. In a study on physicians’ screening 

recommendations, 95% routinely recommended colonoscopy as a preventive measure to 

CRC. It remains the most recommended screening procedure today [2-3].  

   Even though there are effective ways to screen against CRC, not all seniors report 

for their 10-year screening. In fact, only about two-thirds of adults ages 50-75 are up-to-

date on their colon cancer checkups. From 2002 to 2010, CRC screening increased from 

54% to 65%, and most of that has been through increased use of colonoscopy. Since 2010, 

the rate of increase has slowed substantially, rising to only 65.1% in 2012 [2-4]. 

Researchers believe that improving patient experience during colonoscopy could further 

increase the percentage of regular CRC screenings.  

 Complications of colonoscopy could be a large factor in the patients’ decision of 

whether or not to receive a colonoscopy. Some of the complications associated with 

colonoscopy include abdominal pain, discomfort, and colon perforation. In one study, 5.4% 
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of patients experienced discomfort during colonoscopy [2-17]; in another, 11% of patients 

experienced abdominal pain [2-18]. Loop formation during colonoscopy is responsible for 

up to 90% of the pain and discomfort associated with colonoscopy [2-10], and mechanical 

forces exerted on the colon wall are a common cause of colon perforation [2-16]. As a loop 

is formed, the scope deforms the colon wall at bends [2-11]. A simulation of a loop 

formation (N-loop) can be seen in Figure 2-1. This deformation can theoretically be 

reduced by eliminating mechanical forces between the scope and the colon wall, forces 

which could also cause perforation.  

 To mitigate the pain, physicians often sedate the patients during a colonoscopy. 

During a colonoscopy, the patient’s discomfort is often a good indicator that a loop has 

formed or perforation might occur. While the patient can give feedback to the physician 

about his current state of discomfort, the physician can be sure to adjust the endoscope to 

prevent perforation. Therefore, while the anesthesia provides relief from pain, the lack of 

patient-pain feedback could increase the possibility of perforation. The best way to mitigate 

pain and discomfort, and therefore increase patient satisfaction, is to prevent looping.  

Figure 2 - 1: A simulation of loop formation before colonoscopy (left) and after colonoscopy (right) [2-12]. 
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 Given this challenge of preventing looping, many researchers are exploring new 

methods of locomotion inside the colon. This is no easy task; the colon is slippery, 

irregular, collapsed, and varies in diameter throughout its 5-foot length [2-13]. Colobot is 

a semi-autonomous endoscope tip that bends to follow the axial curvature of the colon 

based on three non-contact distance sensors [2-5]. While in theory this reducesshear forces 

between the tip of the endoscope and the colon, it provides no solution for the looping 

caused by feeding the endoscope manually from outside of the body.  

An earthworm-based creeping robot is introduced in [2-6]. The earthworm 

approach in theory could prevent looping since the device is essentially pulling itself into 

the colon instead of being pushed in; however, this device is very complex since it employs 

four small DC motors, bringing all four into the colon with it. Also, maintaining adequate 

friction is difficult for this robot due to the mucous layer inside the colon.  

The Cath-Cam presented in [2-7] uses a catheter and guidewires to move a camera 

through the colon. This method significantly reduced the forces exerted on the colon wall, 

but it also lacks appropriate tissue interaction needed to replace the current colonoscope. 

Other diagnostics-only systems include the Aer-O-Scope and the Endotics System™. The 

Aer-O-Scope displays an innovative locomotion technique where two balloons are inflated, 

one as an anchor just inside the rectum as another as a means of locomotion [2-8]. Air is 

introduced between the two balloons, advancing the distal balloon (and the endoscope tip) 

through the colon. While this setup reduces forces experienced on the colon wall, 

researchers in one experiment found that it only reached  



7 
 

 
 

the cecum 83% of the time [2-8].  

The Endotics System™ also employs the inchworm technique of locomotion. It has 

a steerable tip, video, irrigation, and suction [2-9]. This system was tested with 71 

individuals and compared directly with traditional colonoscopy. The Endotics System™  

Device Strengths/Deficiencies 

Traditional Colonoscopy Effective in detecting polyps and colon cancer. Causes pain and 

discomfort by deforming the colon wall at corners. Possible colon 

perforation can occur. 

Colobot Prevents shear forces at the tip of the scope with a steerable tip. The 

distal portion of the scope could still likely cause looping. 

The Endotics System Inchworm technique employing a steerable tip, suction, irrigation 

and video. Out of 71 tests, it was unable to reach cecum 13 times 

(compared to 4 for traditional colonoscopy.). 

Cath-Cam Uses a guidewire to guide scope through the colon. While peak 

forces are reduced, procedure time would likely be increased.  

Wireless Capsule Endoscopy 

(WCE) 

Employs a camera inside a capsule housing. Useful for diagnostics 

in the small bowel and esophagus. Performs diagnoses passively 

with no ability to “actively” diagnose. 

Earthworm  Inchworm technique that employs 4 DC motors.  

Snake-like Colonoscope Continuously deformable snake-like scope. Control system is 

complex. 

Semi-autonomous pneumatic 

colonoscope (thesis device)  

Pneumatically driven robot tip with a simple control system and 

potential for full autonomy. Only experiences shear forces on the 

robot tip. Due to the lack of shear forces, looping could likely be 

reduced. 

Table 2 - 1: Comparison table of related devices. 
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 (ES) was unable to reach the cecum in 13 patients, compared with only 4 patients using 

traditional colonoscopy. The ES device is also much slower with an average time of 45 

minutes compared to only 24 minutes in traditional colonoscopy [2-9].  

 A snake-like colonoscope was developed in [2-14]; this device acts like a 

continuously deformable backbone, with several links capable of two-degree-of-freedom 

motion. While this device shows potential for reducing shear forces and preventing 

looping, the control system, overall design, and kinematics are much more complex than 

the device described in this thesis [2-14] [2-15]. 

Endoscopy is also being researched in the form of a capsule. Wireless capsule 

endoscopy (WCE) offers the capability of diagnostics throughout the entire gastrointestinal 

tract [5-11]; however, WCE is also a diagnostics-only system and does not offer any tissue 

interaction capabilities, nor can one generally control the capsule position.  

 A comparison table highlights the key features of each of the aforementioned 

designs including the design presented in this thesis along with some of the strengths and/or 

deficiencies of each. While the designs are all quite innovative, no solution has been able 

to prove itself as a direct replacement for the traditional colonoscopy. Many of them are 

either a diagnostics-only system, offer little potential for tissue interaction, or appear to be 

overly complex. The colonoscopy device presented here offers a new look at an innovative 

locomotion technique that presents new possibilities for diagnostics and future tissue 

interaction. The locomotion technique described in this thesis reduces shear forces inside 

the colon and eliminates looping.   
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Chapter 3: Mechanical Design 

 Locomotion of this device is driven by pneumatics; a latex tube unravels from 

inside the robot tip and inflates upon exiting, advancing the device through the colon. A 

sealing mechanism prevents air from entering the robot tip and applies a vacuum to the 

latex tubing allowing it to be tightly packaged. The design of this device is discussed in 

this section along with some of the theory behind a few of the design choices made. 

Preliminary design of the colonoscopy robot can be found in [3-1]. The colonoscopy 

robot was designed using the following functional requirements: 

Figure 3 - 1: Colonoscopy robot tip parts 
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 Device must be able to travel from the anus of a patient to the cecum (roughly 5 

feet) 

 Device diameter must be small enough to fit into the anus (although this is 

somewhat ambiguous) 

 Device must provide visual diagnostics  

 Device must be able to turn 90° in any direction 

Following these requirements, the final device was designed as shown in Figure 3-1. The 

body of the robot includes five main parts: the latex tubing, sealing mechanism, camera, 

tubing enclosure, and outer shell. Design considerations for each will be discussed in their 

subsequent subsections.  

3.1 Latex Tubing 

The latex tubing used in this device was purchased from Kent Elastomer Products, 

Inc. Colon dimensions provide a constraint for the dimensions of the tubing as the 

maximum unconstrained  inflated tubing diameter prior to rupture should not be greater 

than or equal to the diameter of the colon. The tubing wall thickness was also an important 

consideration, as it impacted the length of the tubing able to fit inside the tubing enclosure.  

 After iteratively testing different latex tubing, it was determined that the natural 

rubber latex tubing with an inner diameter of 1/8” and wall thickness of 1/32” would work 

well in this device. More information on the mechanical properties of this tubing can be 

found in Appendix A-3-1. These dimensions allowed a linear expansion ratio of 3.6:1 and 

a diameter expansion ratio of about 6:1 or less. This satisfies the requirements of the 

inflated tubing being smaller in diameter than the diameter of the colon.  
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Since 1.5m of travel was required of the colonoscopy robot, a tubing length of 

0.417m (due to the expansion ratio, 1.5m/3.6 = 0.417m) would allow the robot to travel the 

entire distance of the colon. The sealing mechanism allowed the tubing on the proximal 

side to be vacuumed, reducing the bulkiness of the tubing stored in the tubing enclosure. 

An adequate diameter for the tubing enclosure was approximated by the Archimedean 

spiral equation [3-2]: 

𝑟 = 𝑎𝜃      (1) 

where 𝑟 is the outer radius, 𝑎 is the distance between each arm of the spiral (i.e. 
𝑑𝑟

𝑑𝜃
), 

and 𝜃 is the total revolutions of the spiral. Since 𝑎 is unknown, it can be found 

experimentally by counting the number of revolutions, measuring the diameter of the 

spiral and then solving equation (1) for 𝑎. After vacuuming the tubing to decrease the 

bulk, the tubing was rolled around a 2.86mm post for 8 revolutions. The diameter was 

measured at 31.75mm, and 𝑎 is calculated as follows: 

𝑎 =  
31.75/2

8∗2𝜋
= 0.316          (2) 

The arc length of the Archimedean spiral can be calculated as follows: 

𝑠(𝜃) =
1

2
𝑎(𝜃√1 + 𝜃2 + 𝑠𝑖𝑛ℎ−1(𝜃)) 

Using this equation, the required length of tubing (0.417m) can fit inside of a cylinder with 

a radius of 16.1mm. This radius was rounded up to 17mm in the design to give it a little 

more travel distance.  

3.2 Sealing Mechanism 

The sealing mechanism implemented is crucial to the performance and reliability 

of this device. As the tubing is wound around the spooling screw, the sealing mechanism 
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creates a vacuum inside the latex tubing, allowing the air to be removed and the bulkiness 

to be diminished. As the robot advances and the latex is unspooling, the sealing mechanism 

prevents air from entering into the robot tip. Tests have shown that when air enters into the 

robot tip, the latex tubing no longer can unspool itself, preventing advancement of the 

device. Since this is such an important part of the product, it deserves a detailed discussion.  

The isometric figure shown in Figure 3-2 gives a closer look at the sealing mechanism 

(SM) used in this device. The SM consists of two sets of three bearings. One of those sets 

is fully constrained, and the other is allowed to move. The free-moving set of bearings can 

Figure 3 - 3: Sealing mechanism side view 

Figure 3 - 2: Sealing mechanism isometric view 
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move towards or away from the fixed set by means of set screws. This, in essence, pinches 

the tubing together, creating a seal in the tubing that prevents air from entering into the 

robot tip. The tightness of the screws is able to be adjusted as needed when the latex tubing 

does not dispense properly. If the set screws are too tight, proper dispensing will not ovvure 

and the latex tubing will likely burst before dispensing. A side view of the SM illustrates 

the fixed and moving bearings in Figure 3-3. The other, smaller bar shown in Figure 3-3 is 

a tool used to redirect the tubing as it is being unspooled from the robot tip. This allows for 

a smooth release of the latex tubing from the robot tip.  

 An exploded view (Figure 3-4) of the sealing mechanism illustrates all of the 

components used and shows how it is assembled inside the robot tip. 

3.3 Camera 

The camera used in this device is a small 9.5mm x 9.5mm x 12mm closed circuit 

television (CCTV) camera. The video obtained from this camera was had poor contrast and 

Figure 3 - 4: Sealing mechanism exploded view 
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was often fuzzy. Even when external lights were used to illuminate the colon, the camera 

did not provide exceptional video because the focal length was not short enough. While 

the camera used in this study was commensurate for this project, a better camera should be 

explored if the device is to be further improved. 

 3.3.1 Camera wiring 

Some difficulty was experienced in the effective placement of a wire to power and 

receive signal from the camera. With the wire placed outside of the body, the robot tip 

drags the wire through the colon. Benchtop tests showed that the friction caused by 

dragging the wire prevented the robot tip from progressing through the entire 5-foot length 

of the colon. This issue was solved by shrinking the size of the cable and creating a flexible 

wire dispenser that could move with the robot tip as shown in Figure 3-5. The cable consists 

of three 12-foot long 30-gauge wires twisted together. This cable is helically wrapped 

around a solid cylinder to form a helical coil with none of the coils overlapping. As the 

helical coil is held in place, a thin sheet of nylon film is sprayed with a repositionable spray 

Figure 3 - 5: Cable inside canister peels off of plastic due to weak, repositionable spray adhesive 
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adhesive and wrapped around the helical coil, adhering the plastic wrap to the coil. The 

cylinder is pulled out of the canister and the top of the plastic is folded over into the bottom 

part of the robot tip. 

 This wiring setup allowed the robot tip to travel the entire 5-foot distance inside the 

colon. It mitigates the friction effects experienced by dragging a wire through the colon. 

An example of a 5-foot run with the wiring canister attached can be seen in Figure 3-6. 

 

 

 

Figure 3 - 6: CR tip able to travel a full 5 feet with wiring canister 
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3.4 Pneumatic Controls 

Figure 3-7 displays the pneumatic setup we employed in the control of the robot. A 

manual pressure regulator was used to set the pressure to 30 psi. The flow rate was 

regulated by a valve connected in series with an analog flow meter. This was set so that the 

unobstructed flow was maintained at 3 standard cubic feet per hour (SCFH). At the end of 

the pneumatic circuit, we attached an analog pressure sensor in parallel. A solenoid valve 

Figure 3 - 7: Electrical and pneumatic circuits controlling the robot 
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and a switch were used to control the air flow. The switch operator controlled the 

movement of the colonoscopy robot by watching the pressure sensor and switching off the 

air flow when the pressure reached 17-20psi or greater (the bursting pressure discussed in 

section 4.3).  

3.5 Contributions 

 I contributed up to about 20% of the design of this device. My specific contributions 

include the calculations for and change in the diameter of the robot tip in order to house 

enough latex tubing; the snap- and twist-fit features for easy assembly; the camera housing 

flanges in the robot tip; and the wire canister design and assembly methods. Many of the 

other design choices, such as the initial concept, sealing mechanism, latex tubing 

specifications, camera selection, and control system setup had previously been determined 

by other students.   
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Chapter 4: Bench-Top Tests 

 Several tests were performed to verify the safety and efficacy of the colonoscopy 

device. Testing was taken step-by-step from very basic tests of partial systems to a full-

system test inside an excised porcine colon.  

4.1 Tubing Expansion Ratio 

 One of the most basic tests we ran was to determine the expansion ratio of the 

surgical tubing used to inflate and move the robot. This test was performed by measuring 

the uninflated tube length and then measuring the inflated length. The expansion ratio was 

then calculated as: 

𝐼𝑛𝑓𝑙𝑎𝑡𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝑈𝑛𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ
 

The surgical tubing used had a linear expansion ratio of 3.6.  

Since minimizing the diameter of the robot is important for the tip to fit inside the 

rectum, the smallest length of surgical tubing that will still allow for travel through the 

entire colon length (5 feet) is sought. A higher axial expansion ratio is desirable given the 

same tube wall thickness and diameter. This would allow for an even smaller device. It 

should be noted that the axial expansion is of primary importance in this device, while the 

diametrical expansion is less important (a constraint rather than a target). In sizing the tube, 

the only important thing to consider in the diameter is that the inflated tube diameter is less 

than that of a colon; even then, the colon constrains the diametrical expansion of the tubing. 
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4.2 Heat Effects 

 The camera used emitted more heat than expected. It was enough heat to merit a 

test for possible tissue damage from the camera’s heat emissions. In order to perform this 

test, the tip of the robot (with the camera powered) was pressed to a section of colon tissue 

that was partially submerged in water at 37°C. Partial immersion of the tissue maintains 

the temperature of the tissue at body temperature in order to represent the conditions in 

which the robot would operate. The camera tip remained pressed to the tissue for 10 

minutes, and the tissue was inspected for discoloration or any other sign of damage. A 

thermocouple was used to measure the temperature of the water, and another was used to 

measure the temperature at the tip-tissue interface. A representation of this test can be seen 

in Figure 4-1.  No discoloration or tissue damage associated with the heat effects was 

Figure 4 - 1: Representation of the heat-effects test 
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observed, although in further development this should be explored in a histopathology 

report. 

4.3 Tube Burst Pressure 

 To determine the pressure at which the surgical tubing burst, a section of tubing 

was filled with air, gradually increasing the air pressure until the balloon burst. The 

corresponding pressure was recorded as 20psi. This presents a potential safety hazard in 

the current state of the device. Although in most cases the robot can be operated under 15 

psi, in a few instances, when the device was tested inside of excised colon tissue, the air-

filled balloon burst and ruptured the colon.  

Researchers theorize that the use of water instead of air could be a potential solution 

to this safety hazard. A simple test was performed to explore this theory: the latex tubing 

was inflated with water and burst. The rupture of the water-filled balloon appeared much 

less catastrophic than the air-filled balloon due to damping effects. This shows potential in 

mitigating the damaging effects caused by balloon rupture inside the colon.  

4.4 Device Benchtop Tests 

 In order to test the efficacy and functionality of the colonoscopy robot, several 

benchtop tests were developed. Before testing the robot inside an actual colon, it was tested 

via other methods.  

 4.4.1 Preliminary Testing 

In preliminary testing, the colonoscopy robot was tested inside of a clear plastic 

tube or unconstrained on a clean, hard surface (i.e. table or floor). This test verified that the 

robot could traverse the 5-foot length required. It also allowed the researchers to adjust the 
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tension of the screws in the sealing mechanism until the latex tubing could be easily 

dispensed.  

 Another verification test was performed by testing the functionality of the 

colonoscopy robot inside of an insufflated plastic sheath. This test configuration can be 

seen in Figure 4-2. This test allowed the researchers to verify that the robot could travel 

the entire 5-foot length and make turns successfully. Being in the clear sheath gives a clear 

visual of the cable dispenser, allowing the researchers to verify the dispenser functionality 

as well.  

  

 

 

 

Figure 4 - 2: Benchtop test configuration. Robot was tested inside of a clear plastic sleeve. 
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4.4.2 In Vitro Colon Tests 

 The colonoscopy robot was tested in excised porcine colon tissue which was 

arranged to model the colon layout typically found inside of the human torso (although it 

is simplified to 4 basic 90° turns). This method allowed the researchers to test the 

functionality of the colonoscopy robot in direct contact with colon tissue. In this test setup, 

the robot was controlled as described in section 3.4. The main purpose of these tests was 

to show that the colonoscopy robot could traverse through a 5-foot length with four 90-

degree turns, which it did successfully several times.  

 

Figure 4 - 3: Benchtop test of colonoscopy robot in an excised porcine colon. 
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4.5 Data Acquisition 

 In order to characterize the device further, sensors were placed in line with the 

pneumatic controls to acquire the pressure and flow rate data. This data set was used by 

researchers at the University of Nebraska at Omaha (UNO) to explore the capability of 

rendering the colonoscopy robot navigation fully autonomous using artificial intelligence 

methods. 

 4.5.1 LabVIEW Virtual Instrument 

 LabVIEW was the primary software used to obtain the signals from the sensors. 

The raw signal was obtained with a National Instruments myDAQ data acquisition system 

and filtered using a digital low-pass filter found in LabVIEW. The DAQ settings are shown 

in  appendix A-4-2.  

 For the continuous samples acquisition mode inside of a loop, as shown in the 

virtual instrument (VI) in Figure 4-4, data is recorded at 

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑠) =  
𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑡𝑜 𝑅𝑒𝑎𝑑

𝑅𝑎𝑡𝑒 (𝐻𝑧)
 

which in this case is 100/1000 = 0.1 seconds.  
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The complete VI can be seen in Figure 4-4. Pressure data were acquired using the 

Honeywell TBPMLNN060PGUCV pressure gauge. The flow sensor data were acquired 

using the Omron Electronics Inc-EMC Div D6F-10A6-000 airflow sensor. Two National 

Instruments myDAQ modules were used, one for each sensor.  

 4.5.2 Sensor Calibration 

 Calibration of the pressure sensor was performed by comparing the voltage data to 

an analog pressure sensor. The voltage was recorded from 0 to 30 psi and a linear fit was 

recorded as  

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑝𝑠𝑖) =  1988.9 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 − 1.6061 

 Flow sensor data were calibrated as per the data sheet which gives the following 

values: 

Table 4 - 1: Calibration data for Omron Electronics Inc-EMC Div D6F-10A6-000 airflow sensor. 

Flow rate L/min (normal) 0 2 4 6 8 10 

Output voltage (VDC) 1.00±0.12 1.75±0.12 2.60±0.12 3.45±0.12 4.25±0.12 5.00±0.12 

Calibration for the flow sensor was performed in Microsoft Excel; therefore, the calibration 

constants are not shown in the LabVIEW VI. 

Figure 4 - 4: LabVIEW VI layout 
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 4.5.3 Data Acquisition Results and Discussion 

 The main purpose for acquiring digital data of pressure and flow was to show the 

potential for a fully autonomous device. Results for the pressure and flow rate data can be 

seen in Figure 4-7. Examining the data shows that the flow rate spikes correspond with the 

pressure drops. This is consistent with Bernoulli’s principle that velocity (in this case, flow 

rate) and pressure are inversely proportional.  

Since pressure often builds when the robot tip reaches a 90° turn or when a fold of 

tissue impedes its progress, the pressure data show the potential for converting this semi-

autonomous robot into a fully autonomous robot. A possible scenario is that a solenoid 

valve controlling the flow rate could be closed and then opened to allow the robot to retract 

and then advance again in order to get through those turns. Future work could further 

explore the possibilities of converting the robot into a fully autonomous device.  

Figure 4 - 5: Robot pressure and flow data inside excised porcine tissue arranged with four 90-degree turns. 
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4.6 Camera Functionality 

 Visibility inside the colon was difficult. Occasionally, the camera gave clear visuals 

inside the colon (see Figure 4-8), but when the robot tip was pressed up against a fold of 

tissue the image turned black. Even as the robot was in motion, most of the video appears 

blurry and underexposed. The camera used (UAV RC -Nano CMOS Camera 520TVL HD 

0.008lux Night Vision, information attached in Appendix A-4-1) could be replaced with a 

better camera, such as those used in conventional colonoscopy. Coupled with lighting, the 

better camera could provide significantly better visibility inside the colon.  

4.7 Contributions 

 I was involved in approximately 80% of the testing of this device, and many of 

these tests I performed together with Hossein Dehghani. My contributions to the testing of 

this device include 90% of the in vitro tests in the foam form; the camera test described 

above; the LabVIEW programming and setup; the heat effects test; the tube burst pressure 

test; and the tubing expansion test. I was not involved in the sensor selection for data 

acquisition; however, I was directly involved in the calibration and setup of the sensors. 

  

Figure 4 - 6: Brief visibility inside the colonoscopy robot 
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Part II: Biosensor Capsule 
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Chapter 5: Introduction and Motivation 

 Monitoring consumer health is becoming increasingly common via the new rise of 

wearable technology and new research in implantable sensors. Such monitoring provides 

a constant way to monitor health over a significant period of time. Several devices have 

been created in recent years to monitor health and diagnose problems,including devices 

that monitor heart rate, steps, caloric intake, glucose levels, and other biometrics [5-13][5-

14]. A few of the commonly used implants and wearables today include pacemakers [5-

15], continuous glucose monitoring devices [5-16], cochlear implants [5-17], pedometers 

[5-20], and heart rate monitors [5-20]. These devices have typically been marketed and 

sold to consumers; however, potential for wearable device use in surgery and post-

operation is also being discussed [5-18] [5-19]. 

While integrated biosensors monitor useful biometrics, they are often awkward in 

appearance, bulky, or uncomfortable. Indeed, some people may not use wearable 

technology because it is a constant reminder of health impairment or handicap. Implants 

provide a means to conceal a diagnostic or monitoring device within the body while also 

keeping the device close in proximity to the part of the body or organ of interest. 

Implantable devices are also used for post-operation monitoring [5-21]. While implanting 

conceals the device, most efforts to implant a sensor in vivo require invasive operations, 

which may result in complications and scarring. 

 The device discussed in this section of the thesis is a sensor transport and 

attachment device that offers non-invasive deep implantation of the sensor inside the 

gastrointestinal tract (GI). The attachment method employed by the capsule is inspired by 
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the attachment mechanisms of lampreys and tapeworms using suction and “teeth” to latch 

onto the mucosa inside the small bowel. This shows potential for successfully implanting 

a sensor in the GI in a non-invasive way to successfully monitor various biometrics.   

 Part II of this thesis presents the details of the design of the biosensor capsule. 

Various in vitro and in vivo tests are performed and presented to verify the efficacy and 

safety of this device. While further work is needed to integrate a sensor onto the 

mechanism, the device shows potential for accomplishing the task at hand: deep 

implantation and successful attachment of a sensor plate. 

 Capsule endoscopy has been an effective method of diagnosis inside the small 

bowel for over 15 years. This method involves swallowing a small capsule device which 

contains an enclosed camera for diagnosis; passive motion of the capsule occurs through 

intestinal peristalsis. Several studies have shown that capsule endoscopy is comparable and 

even superior in some cases to ileocolonoscopy and small-bowel follow-through (SBFT) 

in detecting small bowel disease, inflammatory lesions, obscure gastrointestinal bleeding, 

polyposis syndromes, and suspected Crohn’s disease [5-1, 5-2, 5-3 ,5-4].  

 Recent research has focused on more active approaches in capsule endoscopy. In a 

study by Kim et al., an earthworm-type device was developed to actively diagnose the 

colon and small intestine [5-5]; however, the performance of this device was highly 

influenced by the layout of the small intestine, making effective locomotion questionable. 

In a study by Tognarelli et al., a stopping mechanism consisting of shape memory alloy 

legs was developed to temporarily halt the passive motion of a capsule [5-6]. A capsule 

driven from an external magnet source is another locomotion technique described in [5-7].  
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Despite the theoretical ability to actively diagnose the small bowel from the inside 

with each of these devices, each technique is limited to just a few days of biometric 

monitoring. Nevertheless, a capsule-like device proves to be an effective and non-invasive 

method of transport for sensors and cameras inside the GI. 

 The new rise of wearable technology among consumers has shown the effectiveness 

of long-term health monitoring, although such devices are often bulky or remind the user 

of a health impairment. Implanting sensors inside the body for extended periods of time 

conceals the sensor, mitigating feelings of embarrassment or a sense of handicap upon 

wearing the device externally.  
Table 5 - 1: Attachment mechanisms of different organisms. Table from [5-10]. 

Organism How they attach 

Diphyllobotheriidean (primitive 

tapeworm 

Attaches to the gut with dorsal and ventral longitudinal grooves on 

the scolex 

T. solium (human pork worm) Double row of hooks, 22-32 hooks on a retractable rostellum 

surrounded by four stickers 

Taenia saginata (beef tapeworm) Four suckers on the top of the scolex with no rostellum 

Diphyllobothrium latum (fish 

tapeworm) 

Scolex has a slit-like groove that is used for attachment 

Remoras (sucking fish) One large sucker with many slits that attach to all types of sea 

creatures 

Dipylidium caninum (dog 

tapeworm) 

Retractable rostellum with several rings of hooks and four suckers 

Whale louse (lice) Five pairs of sharp hooked clays that attach to the skin of the whale 

Hymenolepis nana (dwarf 

tapeworm) 

20-30 hooks on rostellum and four suckers located towards the sides 

of the rostellum 

Hymenolepis microstoma (rodent 

tapeworm) 

Retractable tostellum with an irregular surface lacking microtriches, 

armed with 22-26 hooks and four suckers 

Gecko Uses adhesion to walk up walls and stick to ceilings 

Digenea (flatworm) One ventral and one oral sucker 

Fluke Muscular suckers on the ventral surface, hooks, and spines to attack 

to intestinal walls 

Nematode (roundworm) Head shields and the mouth has 3-6 lips that often have a series of 

teeth on their inner edges 

Hookworm One sucker containing four teeth that are used to draw blood from 

the intestinal wall 
Whipworm Use their slender anterior end to thread through the mucosa. Causes 

occasional peripheral eosinophilia 

Whale barnacles Uses a sticky cement to move around and creates hollow tubes to 

draw up the whale’s tissue to remain stationary 
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 Long-term in vivo monitoring can be useful for various applications beyond 

monitoring steps and heart rate, such as monitoring mass flow rate to determine caloric 

intake, or monitoring temperature and pH levels to explore enzyme activity in digestion.  

One form of in vivo monitoring in recent research is through implantation of wireless 

communicating sensors. A wireless communicating implant for intra-aortic monitoring is 

one such example of this [5-8], and wireless, implantable sensors have also been explored 

in mice in a different study [5-9]. Such devices provide real-time data acquisition that can 

be useful in monitoring and post-operative follow-up with patients [5-8]. While these 

implantable sensors can successfully monitor patients long-term, implantation and removal 

of these sensors can be invasive as operation is required. 

 Biomimicry has provided important insight into other methods of possible long-

term attachment to the GI.  Different attachment mechanisms of various organisms can be 

seen in Table 6-1. Inspiration was taken from the tapeworm to create this device. Reasons 

behind that design choice can be found in [5-10], which notes that tapeworms can stay 

attached to the GI of a human for decades and cause no damage to the tissue or pain to the 

host.  

A capsule was developed as a transportation device for an in vivo implantable 

sensor using inspiration from the tapeworm to implant the sensor. This device could ideally 

implant a long-term sensor onto the small bowel in a non-invasive way. 
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Chapter 6: Capsule Design 

Functionality of the capsule depends on three sources of energy: electrical energy 

(for conversion to heat through resistance), potential energy stored in a spring, and potential 

energy stored as pressure differential using a vacuum chamber.  Sensor attachment occurs 

following a “domino effect” of energy release. A 46-gauge nichrome wire is wrapped 

around a small copper tube filled with paraffin wax which acts as a seal for the vacuum 

chamber. The 46-gauge wire acts as a resistance heater to melt the paraffin wax. When the 

capsule is actuated (magnetically, via a reed switch), electricity is passed through the 

nichrome wire, converting the electrical energy to thermal energy and melting the wax seal. 

When the wax seal is melted, the vacuum is released, sucking tissue into the teeth of the 

sensor plate. As soon as the vacuum force (which maintains the spring in a compressed 

state) becomes lower than the compressed spring force, the spring energy is released (see 

Batteries Copper tube Wax seal Vacuum chamber 

PCB 

Sensor plate Mouth Spring 

Figure 6 - 2: Capsule layout. This figure does not show the nichrome wire wrapped around the copper tube and 
connected to the PCB. 
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Figure 6-2), pushing the sensor plate off of the capsule and facilitating separation. The 

different components of the capsule can be seen in Figure 6-1. 

 

6.1 Design  Goals 

Discussion of design parameters for this device is focused primarily on the hardware, 

electronics, and tissue attachment mechanism. Additional research is being done to 

implement wireless communication into the capsule; however, that aspect of development 

is not discussed here. In addition, sensing capabilities have not yet been fully integrated 

into this device.  

Design requirements for the biosensor capsule are as follows: 

 Passive locomotion of capsule via peristalsis 

 Implantation of sensor plate onto small bowel 

Figure 6 - 3: Unloaded capsule (no applied vacuum). 
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 Separation of capsule from sensor plate following attachment 

 Minimal damage to attached tissue 

 Long-term attachment up to 14 days is desired 

Preliminary design of the tissue attachment mechanism is discussed in [5-10] and [6-1]; 

these two articles discuss the test methods used to determine the sensor plate attachment 

mechanism and the results of long-term adhesion. Design regarding the geometry of the 

capsule, circuit board, sensor plate o-rings, and vacuum chamber are discussed here. 

6.2 Capsule Geometry 

Capsules used in endoscopy vary in size. In 2000, Given Imaging developed a 

capsule that was 11mm in diameter and 30mm long [5-11]. The OdoCapsule, designed to 

stabilize images inside the bowel and provide capsule tracking data, was designed with 

dimensions of 13mm x 30mm [5-12].  

In this design, the diameter and length of the capsule are highly influenced by the 

size of the components used inside. The battery diameter, specifically, is the predominant 

constraint, as smaller batteries could allow a smaller capsule diameter. The vacuum 

chamber volume is another constraint that influences both diameter and length of the 

capsule. Due to the size of the batteries and the vacuum volume, the dimensions of the 

capsule are 13mm x 37.5mm. Further work can be done to shrink the size of the capsule; 
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however, the larger size provided more flexibility in testing different vacuum volumes and 

changing components without having to redesign the capsule.  

 

 

 

Figure 6 - 3: Capsule circuit diagram 
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6.3 Electronics and PCB 

 A circuit schematic for the electronics used in the capsule can be seen in Figure 6-

3, and the circuit board layout can be seen in Figure 6-4. A PIC microcontroller 

(PIC10F322) is used to control current flow through the nichrome wire. Once the reed 

switch is activated (by close proximity to a magnet), the microcontroller sends current 

through the LED, causing it to blink. After the blinking stops, the microcontroller sends 

voltage through the pin connected to the base pin on the transistor, allowing current to flow 

through the nichrome wire. The script used to program the microcontroller can be found in 

Appendix A-6-1. 

 

  

Figure 6 - 4: Capsule PCB layout. R1 = 1k Ohms and R2 = 10k Ohms 
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6.4 Wax Valve and Nichrome Wire 

 The wax valve is a key element in this design. Reliability of the wax is essential. 

Paraffin wax (Gulfwax, 203-045-005) mixed with stearic acid is used to fill a short copper 

tube that is 3mm long and 2.49mm in diameter. A 9:1 ratio of wax to stearic acid proved 

sufficient to keep the solution at a melting point just above body temperature.  

 A 46-gauge nichrome wire was wrapped around the copper tube and used as a 

heating element (see Figure 6-5). When a reed switch on the circuit board is actuated, the 

microcontroller switches the pin that is connected to the transistor to a high state, enabling 

current flow through the transistor. Essentially, when current flow is enabled through the 

transistor, the entire energy supply is sent through the nichrome wire, heating up the copper 

tube. Current flow only ends once the batteries are completely drained or the batteries are 

removed and reinserted.  

 

Figure 6 - 5: Nichrome wire wrapped around copper tube in preliminary assembly stages. 
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 Power transfer through the nichrome wire can be calculated as  

𝑃 = 𝑉𝐼     (1) 

and the current, 𝐼, can be calculated using Ohm’s law as  

𝐼 =
𝑉

𝑟+𝑅
     (2)  

where 𝑟 is the internal resistance and 𝑅 is the resistance of the nichrome wire. Substituting 

this into the power equation results in  

𝑃 =  
𝑉2

𝑟+𝑅
     (3) 

Breaking this up into power dissipated by both internal resistance and the nichrome wire 

results in  

𝑃𝑟 = 𝐼2𝑟 =  
𝑉2𝑟

(𝑟+𝑅)2     (4) 

and  

𝑃𝑅 =  𝐼2𝑅 =  
𝑉2𝑅

(𝑟+𝑅)2     (5) 

respectively. Note that total power, 𝑃𝑡, is as follows: 

𝑃𝑡 =  𝑃𝑟 + 𝑃𝑅     (6) 

Therefore, some of the power is dissipated in the internal resistance of the battery while 

the rest is dissipated in the nichrome wire. Let 𝑥 =  𝑅/𝑟, and 𝑦 =
𝑃𝑅

𝑉2

𝑟

; from equation (5), 

it follows that 

𝑦 =  
𝑥

(1+𝑥)2
     (7) 

The maximum value of equation (7) occurs when 𝑥 = 1, which results in 𝑦 = 1/4. Thus, 

since internal resistance and voltage are constants, varying the nichrome resistance results 

in maximum power transfer when the nichrome wire resistance is equal to the internal 
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resistance. This makes sense in that if the internal resistance is greater than the load, most 

of the power is dissipated internally, and if the load is greater than the resistance, current 

is reduced. 

 Internal resistance of a LR932 battery (A23 button cell) is found by creating a 

simple circuit as seen in Figure 6-6. Voltage of the battery was measured at 1.462V, 

current through the circuit was measured to be 1.45 mA, and the load resistance was 

0.987 kΩ. The internal resistance was calculated as  

𝑅𝑖𝑛𝑡 =
𝑉

𝐼
− 𝑅𝐿 =

1.462

0.00145
− 987 = 21.28 𝛺 

 After finding the internal resistance of the LR932 batteries, an appropriate length 

of nichrome wire was calculated. The enamel-coated 46-gauge nichrome wire used was 

rated at 0.4119 Ω/mm. The length of nichrome wire needed was calculated as 

22𝛺

0.4119Ω/mm
= 53.4𝑚𝑚 

Given the copper tube outer diameter is 2.49mm, the number of wraps around the copper 

tube can be calculated as follows: 

Figure 6 - 6: Circuit used to measure internal resistance. 
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# 𝑤𝑟𝑎𝑝𝑠 =
53.4𝑚𝑚

𝜋 ∗ 2.49𝑚𝑚
= 6.83 𝑤𝑟𝑎𝑝 

Heating of the wire is not overly sensitive to different lengths at such a small scale; 

therefore, 8 wraps has been used to maximize the surface area of the nichrome on the 

copper tube. The tail ends of the nichrome soldered to the copper tubes as shown in 

Figure 6-4 add a little extra length as well, and the typical resistance reading as measured 

with a multimeter is 25Ω to 35Ω. A comparison of the power dissipated in the battery 

(internal resistance) and power dissipated in the nichrome wire can be seen in Figure 6-7. 

As discussed previously, the power transfer is most efficient at 21.28Ω, the internal 

resistance. There is not much difference in power between 21.28Ω, 25Ω, and 35Ω, with 

the power values being 0.026433 W, 0.026262 W, and 0.024862 W, respectively.  

 It is unknown how this amount of power dissipated might affect the wire after 

consecutive actuations. In the benchtop tests described in Chapter 7, the same capsule is 

actuated up to 20 times without any apparent affect to the wire. Since the capsule would 

Figure 6 - 7: Power dissipated as a function of load resistance (resistance of nichrome wire). 
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likely only be needed for one actuation, it can be assumed that the nichrome wire of this 

length is sufficient for this device. 

6.5 Force Balance 

 A very delicate balance exists between the vacuum force and the spring force in 

this device. Force must exist to push the sensor plate off of the capsule, allowing separation 

between the two. Without separation, the entire assembly would simply remain stuck inside 

the small intestine once the tissue was captured. This spring force must be less than the 

vacuum force to maintain an adequate seal. In several capsule assemblies, the spring was 

too long, overcoming the force of the vacuum, giving the appearance of a poor o-ring seal, 

when in reality the force balance was poorly equilibrated. Thus, accuracy of the spring 

length is crucial. With too short of a spring, not enough separation can occur between the 

capsule and the sensor plate; too long of a spring can cause the sensor plate to pop off 

Figure 6 - 8: Force balance of vacuum and spring forces on the sensor plate.. 
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despite a good vacuum seal. The force balance is represented in Figure 6-8. Force of the 

spring can be calculated as 

𝐹𝑠 = 𝑘𝑥, 

where 𝑘 is the spring constant and 𝑥 is the spring deflection. Force of the vacuum can be 

calculated as  

𝐹𝑉 = 𝑃 ∗ 𝐴𝑡𝑜𝑡, 

where 𝑃 is the pressure difference felt by the vacuum, and 𝐴𝑡𝑜𝑡 is the combined area of 

the holes in the capsule where the sensor plate seals. Naturally, 𝐹𝑉 needs to be greater 

than 𝐹𝑠 for the sensor plate to remain sealed to the capsule. Therefore, since 

𝐹𝑉 >  𝐹𝑠, 

it follows that 

𝑥 <
𝑃 ∗ 𝐴𝑡𝑜𝑡

𝑘
 

Vacuum pressure of 13.76 psi can be consistently achieved in the current vacuum system. 

The diameter of the seal location in the capsule is measured to be 0.218in. The total area 

is calculated as 

𝐴𝑡𝑜𝑡 = 2 ∗ 𝜋 ∗
0.2182

4
= 0.07465 𝑖𝑛2 

The spring stiffness value from the vendor (McMaster-Carr product number 94125K521) 

is 0.41 lbs/mm (or 10.414 lbs/in). Thus, 

𝑥 <
13.76 ∗ 0.07465

10.414
 

with a calculated value of 

𝑥 < 0.0986𝑖𝑛 
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 Since the well in which the spring sits is 0.171 inches deep, the total length of the spring 

theoretically should not exceed 0.27 inches (0.717in + 0.0986in = 0.27in). This calculated 

length was tested by iteratively cutting down the spring until the capsule sealed 

repeatedly for a long period of time. The capsule was able to seal reliably at a spring 

length of 0.296”, and it could remain sealed with this spring length for longer than 5 

days. 

6.6 O-rings 

 Two o-rings are used to seal the sensor plate to the capsule. The o-ring seal locations 

can be seen in Figure 6-8. Sealing surfaces are not often 3D printed; however, in order to 

save money manufacturing the capsule tops, the parts were 3D printed. For this design a 

Stratasys Objet 30 3D printer (28 micron resolution) was used to print the capsule parts. 

The glossy surface finish feature gave a better sealing surface than the matte finish.  

To account for the ridges due to the layers in the print direction (same direction as 

the axis of the seal cylinders), a low durometer (50A) buna o-ring was used. Since relatively 

low pressure is experience by the capsule, a low-durometer material would be sufficient, 

and the flexibility of the rubber at low hardness would allow it to seal against a rougher 

surface.  

O-ring dimensions were designed following the 26th edition Machinery’s 

Handbook [6-2]. 

6.7 Vacuum Chamber 

 In theory, maximizing the vacuum chamber volume inside the capsule is ideal since 

maximum volume results in maximum mass flow into the chamber. This ensures that 
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sufficient tissue is sucked into the sensor plate needles. In reality, more than just tissue is 

sucked into the vacuum chamber. Whatever is inside the well of the capsule top will be 

sucked through the copper tube as well as other things inside the intestine. For this reason, 

administering the capsule to the patient in the future would likely follow a period of fasting.  

 Two different vacuum volumes were used to test this theory, and corresponding test 

methods can be found in Chapter 7. The maximum volume achieved in the design of the 

vacuum volume was 0.35 cm3 which was the vacuum volume used in most of the tests 

described in Chapter 7.  

6.8 Contributions 

 I commenced my work in this project with most of the initial design determined. 

My significant contribution to the design of this capsule is the calculated spring length; the 

seal geometry; the test and assembly fixtures; and the o-ring durometer specification. 

Everything else with respect to the design was previously determined including the wax to 

stearic acid ratio; the circuit board layout and design; the microcontroller code; the 

nichrome wire calculations; the vacuum volume geometry; the sensor plate geometry; the 

battery internal resistance calculations; and other related design choices. The majority of 

my contributions with this project can be found in the testing sections of Chapter 7.  
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Chapter 7: Capsule Testing 

 Several tests were devised to test the functionality and safety of the capsule. Other 

tests were created to test the functionality of certain components or to find the best 

combination of variables to use in the capsule (e.g., vacuum volume). After mixed results 

in some of the in vivo tests, further testing was done to test for significance of variables 

such as mucus filling the capsule top well, for example. Each of these tests is described in 

detail in this chapter.  

7.1 Wax Melting Point 

 Care was taken to ensure that the melting point of the wax was not too close to body 

temperature. Should this happen, the vacuum could be released prematurely, resulting in 

attachment of the sensor plate to an undesirable location inside the body.  

 The 9:1 mixture of paraffin wax to stearic acid was tested for melting point. This 

was done by shaving off pieces of wax into a beaker with water. A hot plate was used to 

Figure 7 - 1: Wax melting point test setup 
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heat the water in the beaker incrementally until the wax began to melt. Melting was 

inspected visually as the changes in the shape of the wax particles. Temperature of the 

water inside the beaker was measured at the surface (or location of the wax) with a 

thermocouple. Melting point of the wax was determined to be between 40° and 45° C. The 

setup for this test can be seen in Figure 7-1. 

 In addition to this test, another test was performed where the sealed capsules were 

brought up to body temperature in a temperature controlled chamber. Again, a 

thermocouple was placed at the height of the capsules inside the chamber. Out of five 

capsules, none of the wax seals failed in this experiment; wax seal failure would be visible 

if the sensor plate popped off the capsule.  

7.2 Capsule Seal Tests 

 There are various ways to test the capsule’s vacuum seal capability. The simplest 

and most straightforward method is to seal it in the vacuum chamber and observe that it is 

sealed (meaning the sensor plate does not pop off the capsule and the spring remains 

compressed). If the capsule has a leak somewhere, the spring will be able to easily push 

the sensor plate off of the capsule. 

 In order to determine the location of the leak, a blow test device was created with 

the same sensor plate seal geometry, only a hole in one of the cylinders allows air to be 

blown into the capsule. While this creates positive pressure inside the capsule, the escaping 

air bubbles, when placed under water, allow for location of leaks (see Figure 7-2) which 
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are then covered with vacuum grease or UV glue. If the leak is located in the battery 

compartment, vacuum grease is typically used since the hardened UV glue would often 

cause the batteries to fit poorly inside. A leak anywhere on the body of the capsule (outside 

of the battery compartment) would be repaired with UV glue, a more permanent fix. The 

blow test device is an effective method for locating leaks; however, it is limited to locating 

leaks in the capsule body and battery compartment only—leaks around the copper tube and 

o-rings are still difficult to identify with this device.  

 A third method for testing is attaching the blow test device to the vacuum and 

applying negative pressure to the capsule. Using the blow test device instead of the vacuum 

chamber ensures that the sensor plate seal geometry is adequately seated, and negative 

pressure is directly applied to the capsule. If the blow test device pops off too quickly (with 

Figure 7 - 2: Blow test device 
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a spring underneath), or negative pressure loss is too rapid (without a spring), a leak is 

likely.  

 If a leak is still suspected after testing with these three methods, it is recommended 

to fill the battery compartment with vacuum grease and retest the seal. If the sensor plate 

still fails to seal, a dot of UV glue can be cured on top of the copper tube, and the device 

can be retested; this UV glue dot can be easily removed with a pair of tweezers after testing. 

7.3 Seal Geometry Tests 

 A test was devised to determine adequate seal geometry. This was done by creating 

a fixture with the same geometry as the capsule top seal cylinder (Figure 7-3) and several 

plugs representing the sensor plate seal geometry (Figure 7-4). In some instances the o-

Figure 7 - 3: Seal geometry test fixture 
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ring was compressed between two surfaces (plug C in Figure 7-4) and in others it was in 

an o-ring groove (plug 2 in Figure 7-4).  

 The seal geometry test fixture was bolted to a rigid surface and the plugs were 

pulled with the tensile tester after being vacuum sealed. It was determined that a groove 

for the o-ring, as per the dimensions outlined in the Machinery’s Handbook [7-2], had the 

strongest seal.  

7.4 In Vitro Tests 

Different in vitro tests were run to determine the reliability and functionality of the 

capsule. They were also used to determine the best variables to use in the test. In both in 

vitro and in vivo tests, the porcine model was healthy and roughly 70kg in weight. 

7.4.1 Vacuum volume and added mucus 

An in vitro test was performed to determine what volume of vacuum could reliably 

attach the sensor plate to the small intestine. The test was performed within 36 hours of 

euthanizing the pig to ensure that fresh tissue was being used, and the tissue used was 

immediately immersed in saline and remained immersed throughout the test. In this test a 

Figure 7 - 4: Plugs representing sensor plate seal geometry 
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0.25cc volume was compared to a 0.35cc volume. 

Theoretically, the larger volume should be more 

reliable as it allows for a larger mass flow; thus 

more tissue can likely be sucked into the teeth of 

the sensor plate. 

The test was performed by inserting the 

capsule into a 3”-4” section of small intestine and 

magnetically actuating it. A string connected the 

sensor plate to a tensile testing machine (Figure 7-

5) and the peak force of the sensor plate 

attachment was recorded. Results for both vacuum 

volumes can be seen in Table 7-1. 

A major question to answer was if mucus 

inside the small intestine affected the ability of the capsule to suck in tissue. This was tested 

as well in both the 0.35cc capsule and the 0.25cc capsule by squeezing mucus out of the 

intestine and manually inserting it into the mouth of the sensor plate (Figure 7-6). Results 

for the attachment strength with mucus inserted into the capsule can also be seen in Table 

7-1. 

 

Figure 7 - 5: In vitro attachment force test 

Test No. 0.25cc 0.25cc+mucus 0.35cc 0.35cc+mucus

1 2.221 1.733 3.802 1.985

2 6.645 4.492 4.694 7.554

3 1.464 6.931 3.600 9.354

Mean 3.443 4.385 4.032 6.298

SD 2.798 2.601 0.582 3.842

Attachment Strength (Newtons)

Table 7 - 1: Attachment strength vs. vacuum volume and mucus addition 
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From these results it appears that vacuum volume and mucus addition make little 

difference in the performance of the capsule. In [7-1], the average measured attachment 

force for this sensor plate and infinite vacuum volume was 4.54 N with a maximum of 

8.09 N. With these sensor plates attached with infinite vacuum in vivo, attachment 

duration was as long as 6 days. Since attachment force is roughly the same in vitro, it 

seems likely that in vivo results should show similar results as well, assuming adequate 

separation between the capsule and the sensor plate.  

7.4.2 Tissue aspiration and capsule-sensor plate ejection force 

 A test was performed to verify the repeatability of tissue aspiration by the capsule 

and measure the force required to eject the capsule from the sensor plate. The aim of the 

ejection test was to imitate peristalsis by applying a small load on the capsule after the 

sensor plate had successfully attached to the tissue and the spring had deployed. In [7-1], a 

mathematical model was developed to represent peristaltic forces in the small intestine. 

These forces have amplitudes of 26.9g/cm and 17.2g/cm in the longitudinal and 

Figure 7 - 6: Mucus added to capsule 
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circumferential directions, respectively. For our capsule, the maximum forces are 126.8gf 

in the longitudinal direction and 64.5gf in the circumferential direction.  

 

 After actuating the capsule, observed tissue suction (see Figure 7-8) was recorded. 

Those capsules that successfully aspirated tissue were then attached to the tensile testing 

Figure 7 - 10: Sensor plate ejection test 

Figure 7 - 7: Succesful tissue aspiration 

 

Figure 7 - 8: Sensor plate ejection testFigure 7 
- 9: Succesful tissue aspiration 
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machine with a string to test for ejection force (see Figure 7-8). Separation of the sensor 

plate from the capsule due to the spring typically occurred unaided; however, in a few 

instances, this separation did not occur until the capsule was pulled with the tensile testing 

machine. For capsule loading, a constant load of 50 gf was applied for one minute, after 

which the load was ramped up to 500 gf and the maximum force of ejection was recorded.   

 The test was repeated 14 times, and tissue aspiration was 100% successful.  Of the 

14 successful aspirations, 12 successfully captured the tissue (85.71%). The sensor plate 

was ejected successfully 11 of the 12 times (91.67%). The average force required to 

successfully eject the sensor plate from the capsule was 67.7±60.8 gf. Half of these 

capsules separated with less than 60 gf. 

7.5 In Vivo Tests 

 Three in vivo tests were performed to test the functionality and reliability of the 

capsule inside the body. In all three tests, a porcine model was used—each about 70kg in 

weight. Each test provided valuable information for the development of the capsule.  

7.5.1 In vivo test November 19th, 2015 

 Procedures for this test were outlined as follows: 

1.) Pick a 70kg crossbred, neutered, domestic pig; confirm the animal health status. 

Animals will be acclimated in the LScA facility for 5 days prior to any procedures 

2.) Set up the bench-top X-ray machine. 

3.) Prior to surgery the pig will be fasted for 12 hours.   

4.) Anesthesia will be accomplished by an intramuscular injection of ketamine, 

xylazine and telazol and will be maintained on isoflurane.   

5.) An abdominal laparotomy will be performed to expose a section of the duodenum.   
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6.) A small (just large enough for capsule to fit) enterotomy incision into the duodenum 

to attach to the intestinal wall.  

7.) The capsule will be inserted into the jejunum through the enterotomy made in step 

3. 

8.) Activate the 10-second timer on the capsule. 

9.) Wait until the vacuum in the capsule has actuated.  

10.) Once tissue suction is successful, the enterotomy will be sutured closed and a 

radiopaque marker will be attached to the intestinal mesentery as close to the capsule 

position as possible.  

11.) Radiographs will be taken prior to recovery from anesthesia.  Two views, a 

ventral dorsal and a lateral abdominal, will be taken to establish the initial position. 

12.) Radiograph images will be taken every 12 hours until all capture mechanisms have 

detached and the capsules have been excreted. 

13.) Euthanize the porcine model using surgeon’s suggested method. 

14.) The x-rays will be used to analyze the adhesion duration. 

Figure 7 - 11: Capsule inserted into intestine with radiopaque marker sutured 
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These procedures were followed, and the sensor capsule inside the intestine with the 

radiopaque marker can be seen in Figure 7-9. The x-ray in Figure 7-10 shows the location 

of the capsule 4 hours after insertion. 

Figure 7 - 10: X-ray 4 hours after surgery 

 

Figure 7 - 12: X-ray 52 hours after surgeryFigure 7 - 10: X-ray 4 hours after surgery 

Figure 7 -11: X-ray 40 hours after surgery 
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 The sensor plate remained close to the radiopaque marker for more than 40 hours. The x-

ray taken roughly 40 hours after surgery can be seen in Figure 7-11. The next x-ray (52 

hours after surgery) shows the sensor plate clearly separated from the radiopaque marker 

(Figure 7-12). It is likely that the sensor plate detached from the intestine between 40 hours 

and 52 hours from the time of the surgery. 

 The spring used in this capsule was too long. It measured at 0.302” long, and a large 

amount of vacuum grease was needed to better adhere the sensor plate to the capsule in 

order to keep the forces balanced before actuation. Even with the added vacuum grease, 

the sensor plate popped off before the wax seal was broken (the timer, displayed by the 

blinking LED, had not finished blinking); however the tissue quickly sealed around the 

edges of the sensor plate and tissue was still aspirated into the mouth of the sensor plate. 

This test provided evidence that the spring was too long, and was subsequently cut down 

to 0.296” for a more reliable seal.  The difference between the successful spring length and 

Figure 7 - 13: X-ray 52 hours after surgery 
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the unsuccessful spring length is very small (0.006”) showing further evidence that 0.296” 

is close to the spring length limit. 

7.5.2 In vivo test February 9th, 2016 

 Similar test procedures were used from the November 19th test except 5 capsules 

were inserted. The sensor plates on these capsules were modified to include wires on them 

to make them more radiopaque (see Figure 7-13). The spring length used in these capsules 

was short (0.259”). 

In this test, each capsule was marked with surgical clips on the mesentery close to 

the location of the capsule. These clips were also used as a numbering system for the 

capsules, and a number of clips were placed next to the corresponding capsule (i.e.5 clips 

Figure 7 - 14: Capsules used in February 9th test 
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on the mesentery next to capsule 5). The x-ray 4 hours after surgery can be seen in Figure 

7-14. 

 The number of capsules and clips made x-rays difficult to read at times. Also, this 

pig had a rounder abdomen, making some x-rays fuzzy and unclear. During surgery, only 

4 of the 5 capsules successfully actuated, although all 5 were left inside the abdomen. 

Figure 7 - 16: X-ray 4 hours after surgery 

Figure 7 - 15: X-ray 16 hours after surgery 
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The morning after surgery (16 hours post-surgery), only three of the five sensor 

plates can be seen (Figure 7-15). One appears to be close to the cluster of clips, but it is 

unclear if it is on top of one of the capsules or not. 

  On the evening of the 10th of February, a good image of all five sensor plates 

(Figure 7-16) can be seen. Two of those sensor plates were clearly separated from the 

capsules and no longer attached to the intestinal wall. The other three appeared to still be 

on top of the corresponding capsule. Only one of those was close to the cluster of clips, 

showing potential for continued attachment; however, that specific capsule also seems to 

be somewhat distant from the clips when compared to the initial location. The sensor plate 

could have attached, but due to the shortness of the spring, it was not able to separate from 

the capsule, and the whole unit (capsule, sensor plate, spring) could be stuck at this point 

in time. At this point, however, we can likely conclude that 3 of the 4 successfully actuated 

sensor plates have detached between 16 and 28 hours after incision repair. One sensor plate 

Figure 7 - 17: X-ray 28 hours after surgery 
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seems to be close to the cluster of clips the following evening (February 11th 7:00pm), but 

it is unclear whether this sensor plate was detached or not at this point (Figure 7-17).  

 In this test four of the five capsules successfully actuated. Of the four successful 

actuations, three of them became detached between 16 and 28 hours. Only one of them 

Figure 7 - 19: X-ray 52 hours after surgery 

Figure 7 - 18: Successful tissue aspiration in vivo. 
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shows signs of remaining attached up to 52 hours. For the capsules used in this test, the 

spring length was miscalculated at 0.259”. This is another possible reason long-term 

attachment did not occur. 

7.5.3 In vivo test March 29th, 2016 

 In this test, only 2 capsules were used. The spring length was increased to 0.296” 

(following the iterative test explained in section 6.5) and sensor plates were not fitted with 

electrical wires. Instead, in an effort to make sensor plates more radiopaque, an aluminum 

foil was placed on the underside of the sensor plate.  

The procedures were changed slightly to minimize surgeon disturbance to the 

attachment of the device. From benchtop tests and previous in vivo tests, disturbances 

(pulling/moving tissue) after tissue aspiration seemed to affect the tissue capture ability. 

Therefore, in this test, the enterotomy in the duodenum was sutured before both capsules 

were actuated (successful actuation/aspiration can be seen in Figure 7-18).  

After inserting the section of intestine and capsules in the abdomen, the researchers 

remembered that surgical clips had not been placed to mark the location of the capsules. 

Subsequently, the section of tissue was taken back out to apply the surgical clips. After 

Figure 7 - 20: Capsules in intestine after applying surgical clips 
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applying the clips, the tissue attachment appeared to be affected by the tissue disturbance 

(compare Figure 7-18 to Figure 7-19). 

 The x-ray taken that evening (7:00pm) showed that the capsules did not remain 

attached (Figure 7-20). Poor attachment of the sensor plates is likely due to the disturbance 

from moving the tissue around to place the surgical clips.  

 

 

Figure 7 - 21: X-ray taken 4 hours after surgery 
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7.6 Contributions 

 I contributed directly to all of the testing described in this chapter. The only test I 

did not specifically perform myself or with a team of engineers was the seal geometry test 

described in section 7.3, although I was involved in the test setup and brainstorming of the 

different geometries tested. 
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Chapter 8: Discussion and Conclusion 

 This thesis presents the design, controls and testing of two novel devices: a 

colonoscopy robot and a biosensor capsule. The goal behind each device is to provide a 

less-invasive and more efficient way to obtain detailed diagnostics within the 

gastrointestinal tract. From the tests described, each device shows potential for reaching 

these goals. The colonoscopy robot is able to successfully obtain video while traversing 5 

feet and four 90° turns. The biosensor capsule is able to aspirate and capture tissue, leaving 

the sensor plate attached to the inside of the duodenum for up to 52 hours. Each device 

needs improvement and further testing in order to be proven safe and efficient. 

 With the colonoscopy system described in this thesis, friction is believed to be 

reduced, and subsequently, much of the pain and discomfort associated with traditional 

colonoscopy could be mitigated although this has not been proven. Reducing this pain will 

likely result in a better patient experience with colonoscopy, which then will result in more 

patients submitting to routine colonoscopies and fewer mortalities due to colon cancer.  

Some safety concerns have been discussed with the use of pneumatics inside the 

colon. When the latex tube bursts, the rupture is rather violent; however, if water were used 

in this device, the rupture would likely be much less violent. Another option to improve 

safety would be to use a different material in place of the latex; a rubber material that 

requires less pressure to inflate could be safer overall. Safety is extremely important, and 

these theories should be explored in further development. 

Another question raised in the development of the colonoscopy device is how the 

device would be removed. Just as the robot tip is advanced by the inflation of the latex 
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tubing, it can also be retracted by deflating the latex tubing, in theory. While this has not 

been tested, researchers believe that the robot tip can follow the curvature of the colon as 

it retracts just as it advances. If the device for some reason could not be retracted (e.g. 

tubing breaks or detaches from robot), researchers believe that the robot would simply be 

excreted. Further testing is required to prove these theories. 

The capsule system repeatedly aspirates and captures tissue. Of the 8 capsules 

tested in vivo, 7 of them actuated successfully. All 7 of these successfully aspirated tissue; 

however, only 2 of the 7 sensor plates remained attached for more than 24 hours. This is 

still far from the 2-week attachment goal. Several variables and possible design changes 

can be explored to improve the length of attachment. 

Successful attachment is based on several factors in sensor plate geometry and 

sensor plate ejection. From [7-1], the recommended geometry for the sensor plate 

attachment mechanism is six needles placed at a 45° angle in a 5mm diameter “mouth”; 

however, in the test described in [7-1], the sensor plate geometry was only tested 3 times 

with each configuration, and the standard deviation is large enough with each configuration 

that drawing a conclusion on adequate geometry parameters may be premature. More data 

points for each configuration could provide stronger evidence for the recommended 

geometry. 

 The other big factor in successful attachment is successful sensor plate ejection. 

Sensor plate ejection force (described in Chapter 7) was measured in one set of tests, but it 

was not repeated in subsequent tests. In the other in vitro tests, the sensor plate did not 

separate from the capsule, and this separation is necessary for successful ejection.  
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Evidence of lack of separation can be seen in the in vivo tests as well, where a few 

sensor plates remained on top of the capsule as the capsule continued down the GI. The 

mathematical model described in section 7.4.2 shows that the longitudinal force 

experienced by the capsule is 1.243 N which is close to within one standard deviation of 

the mean force required to detach a sensor plate (section 7.4.1). If there is no separation 

between sensor plate and capsule, the longitudinal force exerted on the capsule could cause 

the sensor plate to detach in some cases.  

The capsule may also be too large in diameter. Circumference of the sealed capsule 

measures 1.86”. The length of the spline that surrounds a capsule with a separated sensor 

plate (unsealed) is 2.16”. This spline is found by drawing an arc around the capsule and 

Figure 8 - 1: Arc representing tissue sucked into capsule 
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sensor plate as in Figure 9-1. Tissue measurements obtained from 9 different photographs 

(as in Figure 9-2) show that the mean tissue circumference is 2.07” with a standard 

deviation of 0.21” (the circumference of the tissue is calculated as two times the length 

measured since the tissue is collapsed). Since the capsule with the fully extended spring 

has a larger circumference than the average section of tissue, perhaps the intestine 

constricts the capsule and prevents separation of the sensor plate from the capsule; 

however, due to the viscoelastic properties of the tissue, relaxation may allow for 

separation over time. A smaller diameter capsule could likely make separation and ejection 

easier.  

Perhaps another method of easily separating the sensor plate from the capsule is to 

redesign the capsule and sensor plate such that the sensor plate slides off the capsule in 

either direction such as in Figure 8-3. This concept exploits a face seal which could 

essentially eliminate the need for the spring.  

Another question that remains to be answered is how muscle contraction affects the 

sensor plate attachment. This could be explored by employing a mechanical intestinal 

Figure 8 - 2: Tissue measurement 



68 
 

 
 

simulator such as the one described in [8-1]. Perhaps contraction could also be stimulated 

in vitro as in the method presented in [8-2].  

 

Future work will also need to investigate how the capsule is affected by travel 

through the GI. In all of the in vivo tests, the capsules were inserted directly into the 

intestine via a surgical incision. Stomach acid may have an effect on the 3D printed plastic, 

the poured resin, or the wax seal, causing the sensor plate to actuate prematurely or lose 

structural soundness. Also, the geometry change resulting from the addition of an actual 

circuit board on the sensor plate could likely change the way this device captures tissue 

both in vitro and in vivo. 

While many questions remain to be answered before these devices can be 

marketable, both the colonoscopy robot and the biosensor capsule show potential for less 

invasive diagnostics with a better patient experience compared to the status quo.  

Figure 8 - 3: Capsule concept using a face seal to eliminate the need of a spring. 
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A-3-6 
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A-3-7 

  

The small pin is cut from this part 
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A-4-1 

 

Information obtained from http://www.aliexpress.com/store/product/UAV-RC-Nano-CMOS-

Camera-520TVL-HD-0-008lux-Night-Vision-Smallest-mini-FPV-Surveillance-

cameras/118500_763006111.html   
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A-6-1 

//Current capsule microcontroller code 

#include <xc.h> 

#include <stdint.h> 

 

//int reset, no code protect, no watchdog, int RC clock 

#pragma config MCLRE = OFF, CP = OFF, WDTE = 01, FOSC = INTOSC 

 

#define _XTAL_FREQ  16000000 

 

#define SWITCH  PORTAbits.RA2 

 

void main() 

{ 

    uint8_t cnt_1m; 

 

    WDTCON = 0b010110; 

    //         01011-  2s interval 

    //         -----0  disable WDT 

 

    WPUA = 0b000000; 

    ANSELA = 0b000000; 

    INTCON = 0b10001000; 

 

    TRISA = 0b100; //configures RA0 and RA1 as output 

 

    //********************POWER ON BLINK********************** 

 

    LATA = 0b000010; 

    __delay_ms(75); 

    LATA = 0b000000; 

    __delay_ms(750); 

    LATA = 0b000010; 

    __delay_ms(75); 

    LATA = 0b000000; 

 

 

    WDTCON = 0b001101; 

    //         00110-  64ms interval 

    //         -----1  enable WDT 

 

    //wait for button press 

    while(SWITCH==1){ 

        SLEEP(); 

    } 

 

    WDTCON = 0b001100; 

    //         00110-  64ms interval 

    //         -----0  disable WDT 

 

    //*****************DIAGNOSTIC MAGNET BLINK******************** 

 

    LATA = 0b000010; 

    __delay_ms(750); 

    LATA = 0b000000; 

    __delay_ms(100); 

    LATA = 0b000010; 

    __delay_ms(100); 

    LATA = 0b000000; 
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    WDTCON = 0b001101; 

    //         00110-  64ms interval 

    //         -----1  enable WDT 

 

    //wait for button press 

    while(SWITCH==1){ 

        SLEEP(); 

    } 

 

    WDTCON = 0b001100; 

    //         00110-  64ms interval 

    //         -----0  disable WDT 

 

    //******************ACTIVATION BLINK****************** 

 

    //Blink LED on RA1 three times 

    /*LATA = 0b000010; 

    __delay_ms(250); 

    LATA = 0b000000; 

    __delay_ms(250); 

    LATA = 0b000010; 

    __delay_ms(250); 

    LATA = 0b000000; 

    __delay_ms(250); 

    LATA = 0b000010; 

    __delay_ms(250); 

    LATA = 0b000000;*/ 

 

    cnt_1m = 0; 

 

    /*WDTCON = 0b010101; 

    //         01010-  1s interval 

    //         -----1  enable WDT 

 

    //**********************WAIT TIMER******************/ 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 

    __delay_ms(1000); 

    LATA = 0b000010; 

    __delay_ms(1000); 

    LATA = 0b000000; 
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    /*while(cnt_1m < 13)//change this value to (number of seconds / 67)  CHANGE 

THIS ERIC 

    { 

        SLEEP(); 

        ++cnt_1m; 

    } 

 

    WDTCON = 0b010100;*/ 

    //         01010-  1s interval 

    //         -----0  disable WDT 

 

    //*****************TURN ON NICHROME BLINK************** 

 

    LATA = 0b000010; 

    __delay_ms(50); 

    LATA = 0b000000; 

    __delay_ms(50); 

    LATA = 0b000010; 

    __delay_ms(50); 

    LATA = 0b000000; 

    __delay_ms(50); 

    LATA = 0b000010; 

    __delay_ms(50); 

    LATA = 0b000000; 

 

    //turn on nichrome wire 

    LATA = 0b000001; 

 

    WDTCON = 0b100001; 

    //         10000-  64s interval 

    //         -----1  enable WDT 

 

    //**********************NICHROME ON TIMER********************* 

    while(cnt_1m < 2)//change this value to the number of minutes of delay 

    { 

        SLEEP(); 

        ++cnt_1m; 

    } 

 

    WDTCON = 0b100000; 

    //         10000-  64s interval 

    //         -----0  disable WDT 

 

 

    //turn off nichrome wire 

    LATA = 0b000000; 

 

    for(;;)// loop FOREVER 

    { 

        SLEEP(); 

    } 

}  
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A-6-4 
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A-6-5 
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A-6-6 
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A-6-7 
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A-6-8 

 

This spring is cut down to appropriate length (0.296”).  
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A-6-9 

 

O-ring durometer is 50A 
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A-6-12 
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A-7-1 

Common Capsule Issues 

Issue Resolution/Cause 

Capsule blinks seven times slowly followed by 

two quick blinks 

This is how the capsule is supposed to 

funcion. After the two quick blinks, 

the wax seal should heat up quickly 

(10 degrees in 2 or 3 seconds, 

roughly). The capsule loads most of 

the voltage (should jump to 3 volts) 

into the nichrome wire for 2 minutes 

and then resets. 

Capsule blinks seven times slowly and then seems 

to reset (initial blink pattern) 

There is likely a short in the reed 

switch soldering pads on the circuit 

board 

Capsule blinks seven times slowly followed by 

two quick blinks, but the wax seal does not change 

in temperature or changes very slowly. 

The transistor may be faulty 

(overheated perhaps with soldering) or 

it may not be soldered correctly. The 

nichrome wire may have broken. If the 

nichrome wire broke, there will no 

longer be a resistance reading across it. 

If solders look good and resistance 

reading is good, replace transistor (or 

possibly the microcontroller). 

Capsule blinks seven times slowly followed by 

two quick blinks but seems to reset prematurely 

(<120 seconds).  

Low batteries. The capsule always 

functions best with new batteries. 

Capsule does not blink at all 

Poor battery connection, poor 

soldering, or unprogrammed 

microcontroller can all be likely causes 

for this. Check solders, or possibly 

replace microcontroller. 
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Sensor plate does not seal when vacuum pressure 

clearly goes above 28 inches Hg. 

Several likely scenarios: leak in the 

capsule, wax does not completely seal 

copper tube, spring is too long, or 

sensor plate o-ring locations are 

chipped. A leak can be found using the 

blow test. The spring should be 0.259" 

or less. Sensor plate o-ring locations 

can be visually inspected. 

Capsule appears to have a poor connection. This is 

likely the case as it blinks when touched or when 

vacuum sealed.  

Poor battery connection. Readjust 

battery connection leads to make better 

contact with batteries.  

Leak in the capsule 

Two common areas for leaks are in the 

battery compartment area and at the 

copper tube location. A drop of cured 

UV glue can go over the copper tube; 

this can be easily removed with 

tweezers. A finger full of vacuum 

grease in the battery compartment can 

plug up small holes there. 
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